
r (NASA-CE1-18265O)

- .

COMPUTER ARCHITECTURE FOR EFFICIENT
ALGORITHMIC EXECUTIONS IN REAL-TIME SYSTEMS:

NEW TECHNOLOGY FOR AVIONICS SYSTEMS
AND ADVANCED SPACE VEHICLES *-l

Prepared by

Chester C. Carroll
Cudworth Professor of Computer Architecture

Department of Electrical Engineering

and

John N. Youngblood
Professor

Department of Mechanical Engineering

and

Aindam Saha
Graduate Research Assistant

The College of Engineering
The University of Alabama

Tuscaloosa, Alabama

Prepared for

The National Aeronautics and Space Administration

Grant Number NAG8-093

Computer Architecture Laboratory
The Bureau of Engineering Research

The University of Alabama
December 1 987

BFR R ~ K X W ~ NO- 410-17
COHPOTER ARCHITECTURE POR N 8 8- 2 00 16

I E F F I C I E N T ALGORITHtlIC EXECUTIONS IN
REAL-TIflE SYSTEHS: NEW TECHNOLOGY FOB
AVIONICS SYSTEHS AND ADVANCED SPACE V E H l C L d S Unclas
(Alabama Univ.) 82 p CSCL O Y B G3/60 0131835

~~ ~~ __

THE UNIVERSITY OF AL'ABAMA
COLLEGE OF ENGINEERING

The College of Engineering at The University of Alabama has an undergraduate enroll-
ment of more than 2,300 students and a graduate enrollment exceeding 180. There are
approximately 100 faculty members, a significant number of whom conduct research in
addition to teaching.

Research is an integral part of the educational program, and research interests of the
faculty parallel academic specialities. A wide variety of projects are included in the overall
research effort of the College, and these projects form a solid base for the graduate
program which offers fourteen different master's and five different doctor of philosophy
degrees.

Other organizations on the University campus that contribute to particular research
needs of the College of Engineering are the Charles L. Seebeck Computer Center, Geologi-
cal Survey of Alabama, Marine Environmental Sciences Consortium, Mineral Resources
Institute-State Mine Experiment Station, Mineral Resources Research Institute, Natural
Resources Center, School of Mines and Energy Development, Tuscaloosa Metallurgy
Research Center of the US. Bureau of Mines, and the Research Grants Committee.

This University community provides opportunities for interdisciplinary work in pursuit of
the basic goals of teaching, research, and public service.

BUREAU OF ENGINEERING RESEARCH

The Bureau of Engineering Research (BER) is an integral part of the College of Engineer-
ing of The University of Alabama. The primary functions of the BER include: 1) identifying
sources of funds and other outside support bases to encourage and promote the research
and educational activities within the College of Engineering; 2) organizing and promoting
the research interests and accomplishments of the engineering faculty and students;
3) assisting in the preparation, coordination, and execution of proposals, including
research, equipment, and instructional proposals; 4) providing engineering faculty,
students, and staff with services such as graphics and audiovisual support and typing and
editing of proposals and scholarly works; 5) promoting faculty and staff development
through travel and seed project support, incentive stipends, and publicity related to
engineering faculty, students, and programs; 6) developing innovative methods by which
the College of Engineering can increase its effectiveness in providing high quality educa-
tional opportunities for those with whom it has contact; and 7) providing a source of timely
and accurate data that reflect the variety and depth of contributions made by the faculty,
students, and staff of the College of Engineering to the overall success of the University in
meeting its mission.

Through these activities, the BER serves as a unit dedicated to assisting the College of
Engineering faculty by providing significant and quality service activities.

Grant Number NAG8-093

COMPUTER ARCHITECTURE FOR EFFICIENT ALGORITHMIC

EXECUTIONS IN REAL-TIME SYSTEMS: NEW TECHNOMGY FOR

AVIONICS SYSTEMS AND ADVANCED SPACE VEHICLES

Chester C. Carroll
Cudworth Professor of Computer Architecture

John N. Youngblood
Professor of Mechanical Engineering

and

Aindam Saha
Graduate Research Assistant

Prepared for

The National Aeronautics and Space Administration

Computer Architecture Laboratory
Bureau of Engineering Research
The University of Alabama

December 1987

BER Report No. 410-17

TABLE OF CONTENTS

Chapter 1 : INTRODUCTION ... 1

Chapter
5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9

5 : HARDWARE AND SOFTWARE ASPECTS 46
Pitfalls of von Neumann Architecture 46
Data-driven Principles 47
Different Hardware and Software Structures 49
Language Considerations 49
Tagged Tokens .. 50
The Overall Architecture 51
Network Topology of the Execution Stage 53
Crossbar Switching 54
Token Format ... 59
Design of the Processing Element 60
Fault Tolerance 63
Stacked Hybrid WSI Technology 6 4

Chapter 2 : THE GUIDANCE AND CONTROL PROBLEM 4
2.1 Background and Objective 4

2.2.1 Kinematics ... 6
2.2.2 Kinetics ... 7
2.2.3 Optimal Control 9
2.3 Minimum Terminal Miss 10
2.4 Zero Terminal Miss 13
2.5 Implementation 16

2.2 Development .. 5

Chapter 3 : PARALLEL IMPLEMENTATION 20
3.1 Restructuring .. 20
3.2 Parallel Numerical Integration Techniques 21
3.2.1 Runge-Kutta Methods 22
3.2.2 Interpolation Method 24
3.2.3 Predictor Corrector Methods 25
3.3 Generation of the Task Graph 28
3.4 Allocation ... 30
3.4.1 The CP/MISF Method 3 1
3.4.2 The BBAS ... 34

Chapter 4 : VERIFICATION AND EXPERIMENTAL RESULTS 37
4.1 Construction of the Task Graph 37
4.2 Allocation Process 38
4.3 Discussion of the Results 41

Chapter 6 : CONCLUSIONS AND RECOMMENDATIONS 66
6.1 Conclusions .. 66
6.2 Recommendations 67

References ... 68

Appendix A: List of Tasks .. 70
Appendix B: PASCAL program for allocation 73

ii

LIST OF FIGURES

Figure

2.1 Inertial frame of an interceptor and target 8

3.1 Serial Predictor Corrector Method 26

3.2 Parallel Predictor Corrector Method 27

4.1 The Task Graph ... 40

4.2 Plot of total execution time vs . No . of processors 43

4.3 Plot of AEF vs . No . of processors 44

4.4 Plot of HUF vs . No . of processors 45

5.1 Block diagram of the overall architecture 52

5.2 A Buffered Delta network 57

5.3a 58

5.3b Crossbar switch with buffers inside the switch 58

5.4 Block diagram of the proposed PE 62

Crossbar switch with buffers at the input links

iii

Chapter 1
INTRODUCTION

Improvements and advances in the development of computer

architecture, both hardware and software structures, now provide

innovative technology for the recasting of traditional sequential

solutions into high-performance, low-cost, parallel systems to increase

system performance. New processes and methodologies influence the

implementation of real-time systems like guidance, control, avionics,

robotics, and so on. The increasing demand of faster, real-time

computation speed can be met with parallel path approaches at the

algorithmic, as well as, hardware levels.

This report is the result of research conducted in development of

specialized computer architecture for the algorithmic execution of a

avionics system, guidance and control problem in real time. The

objective of this research is to enhance vehicle guidance resulting

from optimal guidance strategies by incorporating high-speed parallel

processing. This report presents a comprehensive treatment of both the

hardware and software structures of a customized computer which performs

real-time computation of guidance commands with updated estimates of

target motion and time-to-go.

Optimal control strategies are available for use in many guidance

problems. In this research, the performance index for optimal guidance

is chosen as a quadratic function of terminal miss and control action

costs. A set of coupled, first order differential equations are solved

to compute the optimal commanded acceleration of the advanced space

vehicle.

1

To exploit a high degree of concurrency, the sequential algorithm is

restructured. A parallel, multi-step, predictor corrector numerical

integration technique is employed to solve the set of differential

equations. A subsequent effort is devoted to segmenting or decomposing

the algorithm into parallel and concurrent processes. Evaluation of

derivatives and the integration of state variables are partitioned as

distinct tasks. A task graph is constructed by considering the sequence

in which the tasks are to be executed, satisfying all the precedence

constraints.

An important aspect of this research is the development of an

optimum, real-time allocation algorithm which maps the algorithmic tasks

onto the processing elements.

path analysis, a widely used technique in graph theory and operations

research. For the particular task graph considered, an optimal alloca-

This allocation is based on the critical

tion has been obtained with 29 processing elements. This enables the

execution of the graph in the minimum possible time, as dictated by the

precedence constraints of the graph and availability of resources.

The final stage is the design and development of the hardware

structures suitable for the efficient execution of the allocated task

graph. The system is data-driven, i.e., when the necessary operands for

a task arrive at a particular processing element, the task is immedi-

ately executed. The basic system architecture consists of two star-

shaped clusters , each consisting of 64 processing elements. A high-

speed, buffered, crossbar, delta network allows parallel communication

between pairs of processing elements within a cluster.

2

The processing element is designed for rapid execution of the

allocated tasks. It contains local storage for both instructions and

operands and extensive fault tolerance capabilities. Fault tolerance is

a key feature of the overall architecture.

The remaining chapters of this report: consider the various aspects

In the second chapter, the guidance

Chapter 3

of the research in complete detail.

problem is completely examined and mathematically defined.

deals with the restructuring of the sequential algorithm.

numerical integration techniques, task definitions, and allocation

algorithms are discussed in the third chapter.

parallel implementation is analytically verified and the experimental

results are presented.

driven computer architecture, customized for the execution of the

particular algorithm. Some conclusions and recommendations are made in

the last chapter.

Parallel

In Chapter 4 the

Chapter 5 discusses the design of the data-

3

Chapter 2
THE GUIDANCE AND CONTROL PROBLEM

2.1 BACKGROUND AND OBJECTIVE

The objective of this research is to investigate the enhancement of

vehicle guidance resulting from the incorporation of optimal guidance

strategies made possible by high speed parallel processing in guidance

computation. The critical objective of this study is the determination

of realistic cycle periods for repetitive, real-time computation of

guidance commands with updated estimates of target motion and time-

to-go.

For some time maneuvering vehicles have employed some form of

proportional guidance, which is optimal, or near optimal in many

engagements. In other conditions, its performance may be acceptable but

less than perfect. Due mainly to recent advancements in microprocessor

technology, more sophisticated techniques of advanced estimation and

control theory may be implemented in a relatively small and inexpensive

avionics package.

A number of studies have been directed toward the application of

optimal control theory and estimation to a related guidance area [l-lo].

Simulation results have indicated improved performance subject to the

suitability of the performance criteria, the critical estimates of

time-to-go and target acceleration, and the sensitivity of the guidance

law to the assumed missile dynamics.

In at least one case, optimal grLdance strategies were used in a

highly accurate, nonlinear, six degree-of-freedom simulation of a

tactical missile [5 - 8 1 . Guidance gains were computed as a function of

time-to-go and constant target acceleration for a second-order, linear

4

model system and used in the nonlinear simulation with various estimate

procedures for time-to-go and target acceleration.

promising, but it was difficult to accurately assess the contribution of

model error, estimation error, or nonjudicious performance indices to

the miss distance.

The results were

With the prospect of extremely rapid computation of optimal guidance

algorithms with specially designed computer architectures and parallel

processing, as well as improved estimates of target acceleration, there

is the prospect of solving the equations for guidance gains repetitively

during the course of the intercept using more accurate dynamic models

with adjustable parameter values and fresh estimates of target motion.

2.2 DEVELOPMENT

This section examines minimum control cost, minimum terminal miss

guidance for the intercept of a moving target by a vehicle with inherent

airframe and control system dynamic properties. Particular attention is

given to the idealized problem of zero terminal miss, wherein the

control gains are given in terms of the state transition of the

uncoupled airframe dynamics. This approach separates the kinematic

portion of the intercept dynamics, which is common for all intercept

problems, from the kinetic portion of the vehicle dynamics. The

particular problem structure makes the results applicable to a variety

of engagement problems in which the vehicle airframe can be represented

by a linear model.

The resulting control law has a term related to the intercept

kinematics, which is recognizable as the familiar generalized

proportional navigation term. A second term in the control law is a

5

linear function of the vehicle airframe state and represents the

guidance compensation due to finite airframe dynamics. The final term

in the guidance law is related to target motion, providing an effective

control in cases where target motion can be measured or predicted

accurately.

The formulation structures the guidance problem for separation of

the intercept kinematics from the dynamics of the vehicle. The motion

of the target is accepted as an uncontrollable input to the problem;

however, the kinetic state equation can be augmented with a target model

if available.

2.2.1 Kinematics

Let the vector position and velocity of the target (T) and

controlled vehicle (I) be represented in an inertial frame by y and v,

as illustrated in Figure 1.

YT vT

vT aT

Defining the relative position and velocity of the target with

respect to the missile yields

Y'V

v 9 aT - a1
Letting the vector x represent the kinematic state of the intercept,

then

6

x - Ax + B(a1 - aT)
where

In (3) the identity and null submatrices reflect the dimensionality of

the problem.

2 . 2 . 2 Kinetics

The airframe/control response state is designated as z and satisfies

the linear equation

z - DX + Ez + Fu (4)

subject to the airframe control u (thrust, control surface deflection,

etc.). The dimensions and components of the coefficient matrices in (4)

are vehicle-dependent and provide the generality in the problem.

The intercept kinematics are coupled to the airframe dynamics by

a1 - Gz + Hu (5)

Thus any linearized airframe describable by (4) and (5) is subject to

the analysis.

I

7

vT + Inertial Coordinate Frame

\
0

Interceptor

0
0

/
0

3 Target

xr xr X

Fig 2.1 Inertial Frame of an interceptor d a target

8

2 . 2 . 3 Optimal Guidance

The conventional guidance performance index for targeting vehicles

is of the form

J - O.s~(tf)~Sfx(tf) + (0.5uTRu + r)dt,

t0

where Sf, R, and I' weigh the costs associated with terminal miss,

control cost and time, respectively. In those cases where the terminal

miss is the significant cost, it is logical to constrain the final

position y(tf) to zero and to develop the corresponding control law

under this condition. Equation (6) may be replaced by

and

where

(0.5uTRu + r)dt

t0

Tx(tf) - 0

T - [I 0 1

The equations (3-7) are collectec

Ninimum Miss

x 0 Ax + BGz + BHu - BaT

z - DX + Ez + Fu

J - O.s~(tf)~Sfx(tf) + (0 . 5 ~ ~ RU + r)dt j. t0

below.

9

Zero Misg

x - AX + BGz + BHU - BaT
z - DX + EZ + Fu

J - r(O.SuTRu + r)dt

t0

2.3 M1pIMUH MISS

If the performance index in (8) is augmented in the usual manner,

the Hamiltonian for fixed terminal time is

H - 0 . 5 ~ ~ Ru + XT[Ax+BGz+BHu-Ba~] + pT[Dx+Ez+Fu] (10)

The resulting boundary value problem is

z - Dx + EZ + Fu

The computation of the control gains is achieved via the inverse

formulation

10

The nonsingular diagonal matrix Sf* is used for the computation of

the inverse problem and its elements are set to zero in the solution for

the gains.

The resulting control vector u is

u - Kyx + K ~ z + K3
where

K~ - -R-~(HTBTP~ + FTP~T)
I Kp 0 -R-'(HTBTP2 + FTP5)

K3 -R-l(HTBTPj + FTP6)
and

11

The particular case of interest is that in which the kinetics of the

vehicle are independent of the intercept position and velocity, i.e.,

D - 0

In this case, the equations (11) are integrable and yield

Q3
J
t

where

*A9[0 I
tI

I

and

The elements of Sf* are set to zero in the resulting expressions for the

elements of Q.

1 2

The minimum terminal miss control law is determined by (13) -(15).

The case where the terminal miss weighting is large may be solved by

constraining the terminal position, as is done in the next section.

2 . 4 ZERO TERHI14AL MISS

The zero terminal miss and minimum control cost formulated in an

earlier section and outlined in (9) is solved here.

also treated in Reference 4.

fixed-time problem is

This problem is

The augmented performance index for the

f - vTTx(tf) + [0.5uTRu + XT(Ax+BGz+BHu-BaT) + pT(Dx+Ez+Fu)]dt i'
t

yields the boundary value problem described by

X - -ATX - DTp X(tf) - TTv

13

Selecting

x - SIX + s2z + S3Y + s4

where

A2 - A - BHR'l(HTBTS1 + FTSs)
B2 - BG - BHR"(HTBTS2 + FTs6)

C2 - -BHR"(HTBTS3 + FTS7)

D2 D - FR'l(HTBTS1 + FTS5)
E2 - E - FR'l(HTBTS2 + FTS6)
F2 - -FR-l(HTBTS3 + FTS7)
G2 - -B€IR'I(HTBTS4 + FTSa) - BaT
Hp -FR'l(HTBTS4 + FTs8)

Inspection of (17) and (18) shows that all unknown matrices except

S3 and S7 are null. Leaving

S3 + ATS3 + DTS7 - 0
S7 + ETS7 + GTBTS3 - 0

S3(tf) - TT
S7(tf) - 0 (19)

u - -R-l(HTBTS3 + FTS7)v

14

The invariance of the terminal manifold

implies

Sg + SgA + SlOD - 0

where

Therefore the control law for zero miss is

u K1X + K ~ z + K3

where the navigation, vehicle airframe, and target position components

of the position and velocity control are evident.

For the uncoupled case where D is null, the equations (19) and (20)

are integrated for computation of the optimal gains. Integration yields

Si0 - S7T = Sg(r)BG@E*(t-r) dr

t
J

15

tc

t

t c

t

where

The

written

where

Also

@E* = -@E*E 9*(0) - I
target motion term of the control for the uncoupled case can be

t f r
K3 KO J (t f - 7) aT(7) dr

t

KO - R-l(HTBTS3 + FTS7)S11-1

where VT(t) represents present target velocity and VA(t) is the average

relative velocity on the terminal interval (t, tf).

effective estimation of target motion is recognized.

The need for

2.5 IMPLEMENTATION

To develop an implementation of a real-time optimal guidance and

control processor which is usable in an adaptive mode by continuously

16

I
I

updating the coefficients, a second order, variable parameter vehicle

model was chosen.

problem, but is highly representative of an actual system.

the control computation for the other plane is inherently a totally

parallel process.

optimal strategy was chosen.

This model represents only a single dimension of the

Furthermore,

A minimum terminal-miss, minimum control-action

To implement the algorithm in a realistic planer problem the

following scalar dynamic equations are chosen:

-

0

@n 2

-

Y - v

v - aT - a1
with the airframe model responding in accordance with

..
a1 + 2conaI + wn 2 a1 - on2ac

where aC is the commanded acceleration specified by optimal guidance.

The performance index for optimization is chosen as

‘r
J - 0.5sy2(tf) + 0.5r ac2(t) dt J

t0

where s and r are scalar performance parameters weighing terminal miss

and control action costs.

System parameter matrices corresponding to equation (8) are

A - [1 :]
D - [1 :] E -

B - [-:]
0 1

-on2 -2wn 2
F -

17

H - 0

The optimal commanded acceleration is then given by:

ac - - wn2/r[s4y + S ~ V + SgaI + SlOaI + ~14aT 1

where the optimal gain coefficients satisfy

SI - as42 - o
S2 + Si - aS4S7 - 0
S3 - S2 -BS4 - aS4Sg - 0
S4 + S3
~5 + 2 ~ 2 - as72 - o
S6 + S3 - S5 - /3S7 - aS7Sg
S7 + S4 + S6 - $39 - aS7S10

- $34 - aS4S10 - 0

- 2 ~ 6 - 2 ~ ~ 9 - as92 - o

- 0

- 0

18

These equations, processed from tf to 0, are the objective guidance

equations for implementation of the real-time processor developed in the

subsequent chapters.

19

Chapter 3
PARALLEL IMPLEMENTATION

In this chapter the restructuring of the sequential algorithm is

discussed so that a real-time, efficient, and parallel implementation

can be developed.

experimental results are discussed in Chapter 4. The steps of the

restructured algorithm are outlined in Section 3 . 1 .

integration techniques are reviewed in Section 3.2.

the concepts of a task graph.

problem in general, and two allocation schemes in specific.

The performance of the modified algorithm and the

Parallel numerical

Section 3 . 3 presents

Section 3 . 4 deals with the allocation

3.1 RESTRUCTURING

To calculate the commanded acceleration of the vehicle in one

direction 14 ordinary differential equations must be solved in real-

time. Speed and accuracy are the salient requirements. The computer

architecture suitable for this parallel algorithm is of no less impor-

tance and this is the focus of Chapter 5 .

implications are considered.

Here only the algorithmic

The key to parallel implementation is identifying as many operations

as possible to be executed in parallel and removing dependencies

wherever feasible.

which are simultaneously executable. These asynchronously cooperating

tasks will be executed on different processors if available.

The overall problem is segmented into several tasks

20

The basic steps of the restructured algorithm are as follows :

1.) Remove the sequential bottlenecks of numerical integration
of ordinary differential equations.
decades several authors have come up with efficient and
parallel numerical integration techniques.

In the past three

2.) Segment the evaluation of derivatives and the integration of
state variables into several distinct tasks.

3.) Construct a maximally parallel task system considering all
the precedence constraints.

4.) Develop an efficient allocation algorithm to schedule the
tasks to different processing elements in a multiprocessor
environment.

3.2 PARALLEL W I C A L INTEGRATION TECHNIQUES

There has been some effort over the years to speed up the numerical

integration of an ordinary differential equation (ODE). The old

sequential techniques have been modified so that they are suitable in an

environment with a plurality of processors. In this section some of

these parallel numerical integration techniques are reviewed.

The parallel methods compute the solution of a set of n O.D.E.’s

developed by

Most methods generate yn, an approximation to y(b) on a mesh

a - to<tl<t2< ... <% - b. These are called step-by-step difference

methods.

earlier values yn, y+l,. . . ,yn-r+1.
finite differences is a sequential calculation. Lately, the question of

An r-step difference method is one which computes yn+l using r

This numerical integration by

using these formulas simultaneously on a set of arithmetic processors to

increase the speed has been addressed by many authors.

21

3.2.1 Runge-Kutta (RK) Methods

The general form of an r-step RK method, the integration step

leading from Yn to Yn+l consists of computing

with appropriate values of a 's , b ' s , and R's.

method is

A classical 4-step RK

Miranker and Liniger [ll] developed parallel Runga-Kutta formulas. In

the parallel computation of a third-order approximation y13, first-and

second-order approximations, yo 1 and yo2, respectively in addition to

yo3 must be computed.

gives a second-order parallel scheme as a by-product.

As a consequence, the third-order parallel method

The formulas of

the parallel schemes have the structures:

first order:
RK1

22

second order:
RK2

third order:
RK3

Ki2 - Ky - h f(h, Ynl)
K2 - h f(h + ah, Ynl + bKi2)

Yn2+1 - Ri2 Ki2 + Rz2 K2

~~3 - K~
K3 - h f(h + ah , Yn2 + bKi3 + c K ~ ~)

Yn3+1 - Ri3 Ki3 + R23 K23 + R33 K3

The parallel character of the above formulas insures that RKi is

independent of RKj if and only if i<j, i,j-1,2,3. This means that if

RK1 runs one step ahead of RK2, and RK2 runs one step ahead of RK3, then

they can be executed simultaneously.

R's, the parallel third order RK formula is given by:

Using Kopal's [12] values of the

e hf(b 2 9 y1n+2)

y1n+3 y1n+2 + ~l,+2

K2n+1 hf(h+l + A, Y1n+l + dln+l)

Y2n+2

K3n - hf(t, + alh, Y2n + (a1-(l/6a))Kln +(1/6a)K2n)

Y2,+1 + (1-(1/2a)>K1n+1 + (1/2a)K2n+l

Y3,+1 Y3n + ((2a1-1)/2a)(Kln - K2n) + K3n.

where a - 2(1-3ala1)/(3(1-2al)).
The above 3rd order RK formulas require 3 processors to compute the

three functions in parallel. The main drawback of this scheme is that

it is weakly stable and leads to an error that grows linearly with n.

23

3.2.2 Interpolation Method

Nievergelt [13] proposed a parallel form of a serial integration

method in which the algorithm is divided into several subtasks which are

computed independently.

[a,b] into N equal subintervals [ti-l, ti], to-a, trb, i-1,2,3, ..., N,
to make a rough prediction yio of the solution y(ti), to select a

certain number Mi of values yij, j-1,. .. ,Mi in the vicinity of yio and
finally to integrate the system with an accurate integration method M.

The idea is to divide the integration interval

equal length, (b-a)/N.

interpolating the previous solution segment over the next interval to

The connection between these branches is made by

the right. The time of this computation can be represented by

Tpl - time for serial integrationm + time to predict yio +
interpolation time + bookkeeping time.

Interpolation can be done in parallel. If it is assumed that the

time consuming part is the evaluation of f(t,y) and the other contribu-

tions to the total computation time are negligible, the speed up is 1/N.

But to compare this method with serial integration from a to b using

method M, the error introduced by method M is significant. This error

depends on the problem, not on the method. For linear problems the

error is bounded, but for nonlinear problems it may not be.

usefulness of this method is restricted to a specific class of problems,

and depends on the choice of parameters like yio, Mi and method M.

Thus, the

24

3.2.3 Predictor Corrector (PC) Methods

One step methods do not make full use of the available information.

It seems plausible that more accuracy can be obtained if the value of

ywl is made to depend not only on yn but also, on yn-1,. . . , and fn-1,
fn-2,
For high accuracy they usually require less computation than one-step

methods.

For this reason,multi-step methods have become very popular.

A standard fourth-order serial predictor corrector given by

Adams-Moulton is:

Ypi+1 =

yCi+1 P i + (h/24)(9fPi+l + 19fCi-l - 5fci-2 + fci-3)

+ (h/24)(55 fc i - 59fCi-l + 37fci,2 - 9fci-3)

The following computation scheme, PECE, of the PC step to
calculate yi+l is:

1.

2.

3.

4.

5 .

Let

T f

Use the predictor equation to calculate and initial approxi-
mation to yi+l.

Evaluate the derivative function fPi+l.

Use the corrector equation to calculate a better approxima-
tion to yi+l.

Evaluate the derivative function fci+l.

Check the termination rule. If it is not time to stop,
increment i, set yi+l - yci+l and return to step 1.
- total time taken by function evaluation done for one

step
T p c ~ - time taken to compute predictor (corrector) value for a

single equation

then time taken by one step in serial predictor corrector is

T - 2(nTpc~ + Tf)

The serial method is schematized in Fig. 3.1

25

\
n-3 n-2 n-1 n p+1

Fig. 3.1 Serial Predictor Corrector method

The upper line represents the progress of the computation at the

mesh points for ynp and fnp, and the lower for ync and fnc.

vertical line is the computation front. The calculations ahead of the

The broken

front depend on information on both sides. This a characteristic of

sequential calculation.

Miranker and Liniger developed formulas for the PC method in which

the corrector does not depend serially upon the predictor, so that the

predictor and corrector calculations can be performed simultaneously.

The parallel predictor corrector (PPC) also operates in a PECE mode, and

the calculation advances s steps at a time. There are 2s processors and

each processor performs either a predictor or a corrector calculation.

A fourth order PPC is given by:

yi+1P - Yi-1' + (h/3)(8fiP - 5fi-1~ + 4fi-zc - fi-3c)
yic - y1-1' + (h/24)(9fiP.+ 18fi-1~ - 5fi-2c + fi-3c)

The method is schematized in Fig. 3.2.

26

* c * * * * P
* . *

4 * * C
n-3 n-2 n-

Fig. 3.2 Parallel predictor Corrector rsthod

The computations at points ahead of the front depend only on

information behind the front, a characteristic of parallel

computation. The sequence of computation is divided and each of its two

parts

ynp+l, fn-lC, and ync,fnc
may be simultaneously executed on separate processors.

As shown in [14], the parallel time for a single step of the

fourth order PPC method is given by:

T - nTpCE + tf + 3nT~c + 2Ts
where

T ~ C E = Tf as defined before and
TDC
Ts

- time taken for data communication - time taken for synchronization
For 4 processors (s-2) the parallel PPC formulas are:

27

Generally higher accuracy and fewer function evaluations of PC

method5,as compared to RK methods, are obtained at the cost of increased

complexity and possible numerical instability.

do not inherit the stability of their serial counterparts.

hand, PPC methods are as stable as their serial formulas. This is

proven by Katz, et al., [IS].

The parallel RK methods

On the other

3.3 GENERATION OF THE TASK G W H

A task is defined as a unit of computational activity specified in

terms of the input variables that it requires, the output variables that

it generates, and its execution time. The specific transformation that

it imposes on the inputs to produce the output is not a part of the

specification of the task.

prated.

Thus, the task may be considered uninter-

Let J =(TI, Tp, ..., Tn) be a set of tasks and <. an

irreflexive partial order or procedure relation defined on J.

C-(J, <.) is called a task system. The precedence relation means that,

if T<.T/, then T must complete execution before TI is started.

Then

From this definition a graphical representation, called a task

graph, is obtained for a task system.

whose vertices, or nodes, are the tasks J and which has an edge from T

to TI, if T<.T/ and there is no TI/ such that T<.T//<.T/.

of edges in the task graph represents the smallest relation whose

transitive closure is <. .

This consists of a directed graph

Thus, the set

With each task T two events are associated, initiation and

termination.

any string 5 - a1, 42, ..., azn of task events satisfying the precedence
An execution sequence of an n-task system C - (J,<.) is

relation (i.e., if T<.T/, the termination event of T must occur

prior to the initiation event of TI) and consisting of exactly one

initiation event and one termination event for each task.

that represents a sequential program has only one execution sequence;

however, for other task systems there may be several.

A task system

To discuss determinant task systems, let the physical system on

which task systems execute be represented by an ordered set of memory

cells M = (MI, M2, ...,%). With each task in a system C two, possibly

overlapping, ordered subsets of M are associated,the domain DT and the

range RT.

cells, and when it terminates, it writes values in its range cells.

Given an execution system w for a task system, the value sequence

V(Mi,6) is defined as the sequence of values written by terminating

tasks in 6 for which Mi E RT.

When T is initiated, it reads the values stored in its domain

The intuitive concept of determinant task systems is more rigorously

defined as follows :

A task system C is determinant, if for any given initial state PO,

V(Mi,L)- V(Mi,d), i E [l,m] for all execution sequences 6 and 6 1 .

From this definition, it is clear that a task system representing a

sequential program is determinant since there is only one execution

sequence.

to be equivalent if they are determinant and produce the same value

sequences for the same initial state.

determinant task system repr2sented by the sequential algorithm into an

equivalent determinant task systeqwhich has more parallelism.

Two task systems both consisting of the same tasks are said

The goal is to convert the

29

Given a task system C, tasks T and TI are noninterfering if T<.T/ or

Task systems consisting of mutually noninterfering tasks are TI<. T.

determinant [16]. With the above background in mind the task graph is

generated. The exact details of this are given in Chapter 4.

3 . 4 ALLOCATION

Given a determinant task system in the form of a task graph and the

execution time of each task, the next step is the assignment of the

tasks to p processors. This is termed the allocation phase which is a

part of the preprocessing stage.

The following parameters are available for allocation :

1) a set of tasks J = (Tl,T2, ..., Tn),
2) an irreflexive partial order <. on J,

3) a weighting function W from S to be positive integers, repre-
senting the execution time of each of the tasks, and

4) the number of processors p.

As many as p tasks can be executed in parallel at any time. If task

T is first executed at time t using processor K, then it is executed

only at tines t, t+l, ..., t+W(T)-1 using processor K each time. This is

an example of non-preemptive allocation, where once a task is assigned

to a processor it must be completed before any other task is assigned to

the same processor. An additional requirement is that any task TI, such

that T/<.T, complete execution at time t/ where t/lt.

A schedule is an assignment of tasks to processors that satisfies

the above conditions and has length tmax, where tmax is the m a x i m time

at which the termination events occur for all tasks. The allocation

problem is the determination of an assignment that minimizes tmax with a

30

minimum number of parallel processors.

studied extensively by a number of pioneering researchers [17).

been shown to be NP-complete [18] and can be considered intractable.

When the number of processors, the task processing times and the

precedence constraints are all arbitrary, the complexity of such an

allocation problem becomes NP-hard in the strong sense.

equals NP, it is impossible to construct either a pseudopolynomial time

allocation algorithm or a fully polynomial time approximation scheme

This type of problem has been

It has

Hence, unless P

~ 9 1 .

In order to circumvent these difficulties, heuristic algorithms have

been considered to be the most powerful tools. Indeed, the critical

path (CP) method [22] and HLFET (highest levels first with estimated

times) [20], which essentially is a sort of list scheduling method, are

proposed.

Two different allocation schemes are discussed in this chapter. The

first, proposed by Kasahara and Narita [21], is known as the CP/MISF

(critical path/most immediate successors first) method, is an improved

version of the CP-method.

on the application of the branch and bound technique, is termed BBAS

(branch and bound allocation scheme).

The second, a newly proposed algorithm based

3.4.1 The CP/MISF Method

A critical path is defined as the path from the exit node to the

entry node having the longest path length In mathematical terms

tcr - max It%
k i-

where % represents the kth path from the exit node t o the entry node.

31

tcr is equal to the minimum possible execution time for a plurality of

parallel processors to process the tasks involved in a given task graph.

The level li, defined for each task, serves as the basis for

constructing the priority list. The level li of task i is defined to be

the longest path length from the exit node to task i, or

where nk stands for the kth path from the exit node to Ni.

The CP method is essentially the generalization of Hu's algorithm

[22] . Since the priority order cannot be uniquely determined when there

exists more than one task having the same level, the worst schedule may

result depending upon the task chosen. In this method when two tasks

have the same level, the task having the largest number of immediately

successive tasks is assigned the higher priority.

The CP/MISF method consists of the following steps:

Step 1: Determine the level li for each task.

Stap 2: Construct a priority list in the descending order of li
and the number of immediately successive tasks.

Step 3: Renumber the tasks from 1 to n in the descending order
of priority.

Step 4: Execute list scheduling on the basis of the priority
list.

The problem of determining the level of each task involves the

calculation of the longest path from the exit node to each node. In the

case of a single exit node, a dummy exit node is added. Since all arcs

are directed from the entry node toward the exit node, the longest path

is measured in the direction opposite to the orientation of each arc.

This problem can be solved in O(n2) by solving the Bellman's equations

32

L e t
a i j - 0 if l ink (j , i) ex is t s - -- otherwise

ti

li

- time for executing task i

- level of task i

Then fo r n tasks,

1n - t n

For each node j , j not equal t o n , there must be some arc (k , j) i n a

longest path from n t o j .

that 1j - lk + akj + tj . This follows from the fact tha t the pa r t of

the path which extends t o node k must be the longest path from n t o k ,

i f t h i s were not so, the overall path t o j would not be as long as

possible.

Whatever the ident i ty of k, it is cer ta in

(This is the "Principle of Optimality"). But there a re only

f i n i t e choices of k, i . e , k -n, n-1, . . . , j + 1, j - 1 , ... 2,l. Clearly k must

be a node f o r which 1j is as large as possible.

the most immediate successive tasks can be incorporated i n the same step

by modifying 1j

In fact the e f f ec t of

j'n 1j - 1 + imsucc 3

where imsuccj is the number of immediate successive tasks f o r task j and

n is the t o t a l number of tasks.

A c t u a l experimental resu l t s with respect t o the specif ic problem are

discussed l a t e r . It has been shown [21] tha t optimal solutions w e r e

obtained for about 67 percent of some 200 cases tes ted by the CP/MISF

method.

obtained fo r 87 percent of the cases and those less than 10 percent for

Approximate solutions with error l e s s than 5 percent were

98.5 percent of the cases.

33

3.4.2 The BBAS

Branch and bound implicit enumeration algorithms have emerged as the

principal method for finding optimum solutions to discrete optimization

problems. Kohler’s [24] general representation can be used for the

classification of the branch and bound technique.

BB(Bp,S,E,L,U,RB) each parameter has the following significance:

In the expression

Bp : branching rule
S : selection rule of next branching node
E : elimination rule
L : lower bound function
U : upper bound cost
RB : resource bounds

The proposed algorithm works by partitioning the set of schedules

into smaller and smaller subsets, finding lower bounds on total execu-

tion times of each of the subsets, and using these bounds to guide

further partitioning until a single schedule is obtained whose total

execution time is less than or equal to the lower bounds of all the

other subsets.

Branching Rule, Bp :

An allocation instant is defined as the time when one or more processors

have just finished execution of the allocated task(s) and succeeding

task(s) becomes executable. Since the task times are different, there is

the possibility that the optimal schedule may not be obtained by simple

list scheduling methods. A t each stage of branching procedure, nodes

should be generated to include the cases where a processor or processors

become idle.

processors are introduced, as done in [21]. These idle tasks, together

with ready tasks are allocated.

To this end fictitious tasks which correspond to idle

34

Nidle 0 Mav-I for Ma, M
0 Mav for 14favcM.

where Nidle is the number of idle tasks, Nready is the number of ready

tasks, Mav is the number of available processors, and M is the total

number of processors.

Then the number of nodes generated from each branching node is given

by

%ranch Nalloc

where C is the number of combinations and

Nalloc I) Nready + Nidle.

The set of allocatable tasks is represented by A.

Selection Rule, S :

The selection rule is used to choose the next branching node from the

set of currently active nodes.

lower bound or LLB.

and comparing the lower bounds for a l l the active nodes at each branch-

ing instant.

The rule used in the algorithm is least

The next branching node is chosen by calculating

Lower bound, L :

The lower bound, in our case, is simply the total execution time for the

partial schedule represented by each node.

Upper bound cost, U :

Uhen the solution of the original problem is known a priori, its value

can be used as U. Otherwise, set U equal to a. The value U Ls updated

whenever a smaller solution U/ is obtained. The smaller the value of U

at an early stage of the search process, the shorter is the search time,

35

and a reasonable value of U is evaluated with the help of a heuristic

algorithm.

Elimination Rule, E :

To eliminate some of the active nodes the following rule is employed.

Whenever the lower bound LB(ni)/U/, the node ni is eliminated.

Resource Bound, EtB :

This is the allowable computing time limit and storage capacity limit.

At first glance the simplistic BBAS seems to have enormous time and

space complexities, but the greatest advantage of this scheme is its

inherent parallelism. The potential parallel paths in the control flow

of this algorithm may be explicated and computed by multiple processes.

In other words the loop is unfolded to let the multiple processes work

on different iterations of the unfolded loop.

rudimentary stage and will be further investigated later.

authors are working on a possible parallel implementation of this new

allocation scheme.

This algorithm is in its

Presently the

36

Chapter 4
VERIFICATION & EXPERIMENTAL RESULTS

The restructured parallel algorithm was verified to check its

validity with respect to the actual problem in hand.

were mainly performed to show the improved performance of the new

parallel approach compared to the conventional sequential one.

are shown corresponding to one iteration of the integration of all the

14 differential equations, listed in Chapter 2.

the construction of the task graph.

algorithm is discussed in Section 4.2.

analyzed in Section 4.3.

The experiments

Results

Section 4.1 deals with

The implementation of the allocation

The experimental results are

4 . 1 COIPSTRUGTION OF TASK GRAPH

The fourth order, 2-processor parallel predictor corrector method,

outlined in Chapter 3, is chosen for solving the differential equations.

The basis of constructing the task graph lies in the definition of tasks

and their appropriate precedence constraints. Basically there awe two

types of operations, updating the dependent variables and calculating

the functions. Each update of a dependent variable is defined to be a

task. Hence, for the fourteen differential equations involving PI,

P2,. ..P14 there are twenty-eight different tasks as follows, (Pi)p and

(Pi)= for i - 1...14.
corresponding tasks are (Pi)j+lp and (Pi>jc for i - 1...14.

Note that for a particular iteration level j, the

Due to the highly coupled nature of the differential equations,

there are dependencies between the various functions. It is noted that

decoupling methods can improve the situation.

evaluated from the updated dependent variables with each function

The function values are

37

evaluation task fragmented into smaller subtasks.

are defined in a manner such that each of them have some uniform

execution time.

and parallelism is optimally exploited.

These smaller tasks

In this way the task graph becomes more or less balanced

Some sub-expressions, which are used a number of times, are

identified.

task to prevent repetitive calculations.

required to calculate some constants.

Each of these sub-expressions are defined as a separate

There are some other tasks

A l l the tasks are listed in APPENDIX A. Each task is associated with

task number, task time, predecessor tasks and successor tasks. Initially

the tasks are numbered randomly.

allocation algorithm, according to their respective priorities. Task

times are calculated with the assumption that multiplication and

addition take 30 and 20 time units respectively.

explicitly stated because they are dependent on the hardware used, and

hardware is the subject of later research.

sor tasks for any task are defined in terms of the inputs consumed by

that task and the tasks receiving its output.

Later the tasks are renumbered, by the

The time units are not

The predecessor and succes-

4 . 2 ILLLOCATION PROCESS

This is perhaps the most important phase in the parallel method.

The CP/MISF algorithm, outlined in Chapter 3, was fully implemented in

PASCAL. The program is listed in APPENDIX B. The a'llocation process

translates the task graph into an execution schedule.

schedule is the sequence at which the tasks are executed by the various

processors.

The execution

38

The allocation program takes the task graph as its input. The input

is provided in the form of task number, task time and links of the task

graph.

advantage of the structured nature of PASCAL. The 'initialize' proce-

dure reads the input data from an external file and generates an

adjacency matrix A such that

The program is modularized into various procedures taking

A[i,j] - 1 if there is a link from task i to task j - 0 otherwise.
The 'level' procedure calculates the level of each task in the manner

described in section 3.4.1. A matrix B is constructed such that

B[i,J] - 0 if there is a link from task j to task 1 - -Q otherwise.

The 'renumber' procedure generates the new numbers of all the tasks in

the descending order of the priorities.

correspondingly modified.

The adjacency matrix is

Then the 'main' program does the actual allocation job. Before

allocating a task to a processor, it checks whether the predecessors

have finished execution and whether the processor is free.

processors are chosen in the ascending order of the processor array,

because uniform inter-processor communication time is assumed.

case of nonuniform inter-processor communication, this part of the

program can be modified so that a processor is chosen to minimize the

connrmnication time.

Note that

In the

39

4.3 DISCUSSION OF THE RESULTS

The following three parameters are computed:

1) Total execution time.

2) Algorithm execution factor (AEF) defined as the ratio of the
serial and parallel times.

3) Hardware utilization factor (HUF) defined as the ratio of the
AEF and the number of processors.

It is found that the critical path of the task graph takes 300 time

units, meaning that with the given task graph the minimum total execu-

tion time is 300 time units.

execution time is 6500 units.

decreases as the number of processors increases.

obtained with 29 processors, and an optimum schedule is achieved.

Beyond this point the increase in the number of processors has no effect

on the execution time.

As shown in Fig. 4.2 in the serial

The total execution time progressively

The critical time is

Fig. 4.3 shows the variation of the AEF with the number of proces-

sors. Note that the maximum AEF cannot exceed the total number of

processors. The results show that AEF almost takes its maximum value in

each case and is 21.67 when n - 29.
Fig. 4 . 4 is a plot of the HUF and the number of processors. A HUF

of 100% means that the processors are fully utilized.

that the HUF decreases with an increase in the number of processors.

With 29 processors a hardware utilization factor of over 72% is

achieved.

It is observed

It is concluded that for the given task graph the optimum schedule

At this point the speedup compared to is achieved with 29 processors.

sequential execution reaches its maximum possible value of 21.67 and the

41

hardware utilization is as high as 72.10%. These results show the

validity of the parallel approach and also justifies the use of such an

approach. The restructured method is much superior to the sequential

algorithm and promises a substantial improvement in system performance.

42

*

5
3

4 3

4

4

4

4

4

I)

0

4

*
4

*

4

4

4

4

4

i

4

4

*
n

4

4

*

6
?

44

4

4

*
4

*
*

*

4

4

I)

4

4

e

*

.,

4

4 5

Chapter 5
HARDWARE AND SOFTWARE ASPECTS

I

The design of a suitable multiprocessor computer, which optimally

executes the various independent tasks, is discussed in this chapter.

The parallelism analysis of the restructured algorithm assumes a

multiprocessor environment with uniform interprocessor communication

times and no hardware conflicts. As shown, the algorithm is optimally

executed with 29 processors, providing the commanded acceleration in one

direction.

which is customized for the specific application.

This chapter outlines the proposed computer architecture

5.1 PITFALLS OF VON "Rl MITLTIPROCESSING

Most

model of

benefits

Iannucci

style of

existing multiprocessors are variations of the von Neumann

computation and have so far failed to yield any substantial

over single processor systems.

[2 5] , there are several problems confronting the von Neumann

multiprocessing.

As discussed by Arrind and

The first problem is that of memory latency, the time between

issuing a memory request and getting a response. If the computer

contains a significant number of processors, and each is fast enough

that its cycle time is limited by the speed of light, then the physical

size of the whole computer will make most of the memory a significant

distance away from any one processor.

are needed to access most of the memory, if it is to be shared.

Competition by several processors for the same memory at the same tine

makes the problem more severe.

architects use only messages, prohibiting shared memory entirely and

That is, several instruction times

In trying to solve this problem, many

46

surrendering flexibility and responsiveness. Others allow shared memory,

but make local copies of the data in caches. This solution exchanges the

latency problem for the cache coherence problem, i.e., how to maintain

consistency when one or more of the copies is written.

A second problem is that of effective synchronization. Parallel

processes must be able to wait for others without having to execute many

extra instructions or waste time in other ways, and without signifi-

cantly affecting the other processes that are running in parallel and

not waiting. The use of traditional methods like interrupts, limits the

synchronization rates to once every few hundred instructions.

like test-and-set which wait busily and thereby can avoid exchanging

processes are better, but these approaches usually waste instructions to

accomplish waiting.

Primitives

A third problem is the avoidance of bottlenecks which inhibit the

amount of parallelism that can be attained, thereby limiting the number

of processors that is practical. Changing an architecture, especially

the instruction set, to correct bottlenecks in parallelism is ineffi-

cient because it destroys software compatibility.

5.2 DATA-DRIVEN PRINCIPLES

The solution of the control problem necessitates an efficient and

fast way of handling the movement of large amounts of data among various

processors. This makes the data-driven mode of computation an ideal

candidate. Moreover, the problems associated with the von Neumann style

of multiprocessing are avoided at the very basic level in the data-

driven computer.

Instruction execution in a conventional von Neumann computer is

under the control of the program counter. Whereas, the data-driven model

47

of computation is based on the following two principles:

1) Any computation can proceed as soon as its operands become
available.
can execute simultaneously.

Potentially all operations that are thus enabled

2) All operations are free of side-effects, so that two enabled
operations can execute in either order, or concurrently,
without error.

If a program has a sufficient amount of parallelism, then a data-

driven processor can be kept fully utilized. In the previous chapters

it is shown that there is an enormous amount of parallelism inherent in

the avionics application. As discussed later, an execution unit in the

proposed data-driven processing element receives enabled instructions

only, and waiting for operands is done in a separate section. A

data-driven processor, unlike a processor with a program counter,

executes a stream of enabled instructions in a highly pipelined manner

and allows greater freedom in the order of execution of the enabled

instructions.

Data-driven architectures are usually classified as either static or

dynamic. In a static architecture the nodes of a program graph are

loaded into memory before computation begins, and, at most, one instance

of a node at a time is enabled for firing. A dynamic architecture

facilitates the simultaneous firing of several instances of a node, and

these can be created at runtime.

chapter is of the latter type.

The architecture proposed in this

The parallelism analyses, in the previous

chapters, are based on a single iteration of the integration of the

fourteen differential equations, but there are obvious concurrencies

between the various iterations.

unfolding the integration loop at runtime by creating multiple instances

of the loop body and then executing these instances concurrently.

This architecture has the provision of

48

5 . 3 DIFFERENT SOFTWARE AND HARDWARE STRUCTURES

In this section the salient software and hardware aspects of the

proposed data-driven computer are outlined.

emphasized the software aspects which are accomplished in the prepro-

cessing stage.

hardware aspect.

The previous chapters

The actual machine to execute the tasks constitutes the

5.3.1 Language Considerations

The entire process of defining the algorithm, removing dependencies,

constructing a task graph, and finally allocating the tasks to the

various, processors must be completed before the actual execution starts.

This process is deliberately kept language-independent to gain flexibil-

ity.

use a functional language than a conventional imperative language as the

high-level language to represent the problem.

between the high-level language required to represent the problem and

the base language which is efficiently implemented by the architecture.

The high-level language should satisfy the following properties:

Since the architecture is data-driven, it is more advantageous to

There is a difference

Freedom from side-effects : This is necessary to ensure that
data &pendencies are the same as the sequencing con-
straints.
cannot modify variables in the calling program.
variable results in the creation of new variables.

Global variables are not allowed and procedures
Updating a

Locality of effect : To avoid memory overflow variables
should have a definite region of operation or scope. This
also avoids the apparent dependencies that result from -
duplication of labels.

Equivalence of instruction scheduling constraints with data
dependencies : This means that all the information needed to
execute a program is contained in the task graph.

49

4) Single assignment : This means that each variable may appear
on the left side of only one assignment statement in the
part of the program in which it is active.

There are three main categories of programming languages, func-

tional, actor, and logic, that are suitable for data-driven computa-

tions. Functional languages can either be single-assignment, like ID,

VAL, VALID, and LUCID, or applicative, like pure LISP, SASL, and FP.

Actor languages are programming systems composed of objects that

interact only by sending and receiving messages.

language.

example.

language for this architecture.

SMALLTALK is an actor

Logic languages are based on symbolic logic and PROLOG is an

Any one of these languages can be chosen as a high-level

The base language of this computer is the graphical representation

termed the task graph, discussed in Chapter 3.

executes the tasks shown in the task graph, satisfying the precedence

constraints of the graph.

inputs are available.

The machine efficiently

A task can be executed as soon as all its

5.3.2 Taggad Tokens

In a manner similar to Anrind [2 6] and the Manchester Dataflow

machine [27] , information is carried by tokens that flow along the arcs

- of the task graph. A task is enabled when, and only when, all of its

input tokens are present. An enabled task fires by absorbing its input

tokens and producing output tokens that carry the result as their value.

The order of execution is unimportant since there are no races.

50

5.3.3 The Overall Architecture

The block diagram of the overall architecture is shown in Fig. 5.1.

There are three basic stages, the preprocessing stage, the execution

stage, and the output stage.

host computer gathers the various input data and coordinates the overall

activities.

allocates the tasks to the various processors in an optimal fashion.

Following the allocation phase, the data and instruction tokens are

In the preprocessing stage a conventional

A n important part of this stage is the allocation unit which

downloaded onto the individual memories of the processing elements

(PES).

In the heart of the architecture lies the data-driven execution

stage or the PE array.

connected in a star configuration.

execution of the algorithm requires 29 PES. 60 'workhorse' PES are used

for computation purposes only, and the remaining 4 PES in each cluster

are dedicated for various purposes.

tion link between the preprocessing stage and the cluster.

dedicated PE is reserved for diagnostic purposes.

processor helps in recovery from faults and in reassignment of PES. The

third is reserved for inter-cluster communication, and the remaining one

There are two clusters of 64 PES each, which are

As noted in Chapter 4 , the optimum

One dedicated PE is the communica-

The second

This diagnostic

semes as a link between the cluster and the output stage.

time, only 29 workhorse PES function within a cluster.

in standby and are used when a PE must be aborted after a fault is

detected.

At any given

The others remain

51

For communication with
preprocessing stage

Diagnostic Inter-cluster
PES conununication PES

1
I
I
I
I
I
I
I

I
I
!

PREPROCESSING
STAGE

I
For communication with
the output stage

EXECUTION STAGE

Fig. 5.1 Block Diagram of the Overall Architecture

52

I

Two clusters are required because an identical number of calcula-

tions must be performed to compute the acceleration of the vehicle in

the transverse direction. The efficiency of the-architecture results

from the fast movement of data through the execution stage, which is

devoid of the conventional von Neumann bottlenecks.

The output stage receives the final result tokens from the execution

stage via the dedicated PES in each cluster. These tokens are converted

into a form that serves as an input to the subsequent motion control

actuators.

5 . 3 . 4 Network Topology of the Execution Stage

Among the possible configurations are the ring, tree, completely

connected, and the star topologies.

connected on a circular bus.

to each processor, and failure of a single node or path within the ring

may halt communication in the entire ring. To alleviate this problem,

designers have constructed partially and completely connected rings at

the expense of increased network complexity and cost.

of nodes in a ring is limited because message delays increase linearly

with the number of nodes, making a ring inefficient for heavy traffic.

A tree network uses the minimal number of connections per processor.

In the ring network N processors are

Only 1/N of the bus bandwidth is available

Also, the number

Communication between remote leaves faces a bottleneck towards the top

of the tree, and the data paths become longer as the number of nodes

increases. Hence a tree is also unsuitable for heavy communication. The

completely connected network requires N2 connection links for N

processors, which is prohibitively expensive.

53

The star network has both logical and hardware simplicities.

tasks are uniformly distributed, most messages traverse only two

communication paths. A major vulnerability of this topology is the

If the

active hub which, not only introduces queuing delay, but also disables

the entire network, once it fails. For this reason a passive hub, which

is nothing but a physical connection of the various paths, is used.

The result token from every PE is broadcast to all PES in the

cluster.

address, and all PES decode this field to find a match.

The result token contains a field denoting the destination

5.3.5 Crorabar Switching

An alternative to broadcast communication is the use of crossbar

switch networks.

is broadcast to all the PES.

the hub of the star for routing the information to the appropriate

processor.

parallel communication between pairs of processors.

switches are available which make the switching time negligible compared

to token formatting and communication times.

Communication is inherently sequential if the message

A high-speed crossbar switch can be used at

The crossbar switch gives the cluster the capability of

Extremely fast

An n by m crossbar switch is a device with n inlets, m outlets, and

an array of n+m contacts, sometimes called crosspointo, for connecting

each inlet to each outlet. A crossbar network is an interconnection of

crossbar switches in accordance with certain rules. The switches must be

partitioned into a number of classes called stages in such a way that

all switches in a given stage have the same number of inlets and

outlets.

the network.

The inlets of the switches in the first stage are the inputs of

The outlets of the switches in each stage except the last

54

are connected in an one-to-one fashion to the inlets of the switches in

the following stage by links.

last stage are the outputs of the network.

Finally the outlets of the switches in the

Delta networks are multiple-stage networks with each stage consist-

ing of several crossbar switches, as shown in Fig. 5.2. The switches in

a buffered delta network have buffers to temporarily store tokens which

cannot be forwarded in the current cycle.

network can be constructed from B by B crossbar switches, each capable

of forwarding a token that arrives at any of its B inputs to any of its

B outputs (see Fig. 5.2, where N-8 and B-2). The network has n/b stages

(numbered 1,2, ..., n/b, where n-logpN and blogzB), and each stage has
2(n-b) crossbar switches.

An N by N buffered delta

For each of its output ports, a switch selects one token from the

set of tokens contending for that port and offers it to the next stage

connected to that port.

switch is determined by the switch from a destination address included

in the token.

heads of the switch buffers are considered.

ports, one of the requesting tokens is selected equiprobably and offered

to a switch in the next connected stage. The switches with input tokens

forward them to the intended buffers, if these buffers have a vacancy at

the beginning of the clock cycle.

signal is sent to the switch from which the token came.

The output port through which a token leaves the

Generally, the output ports requested by the tokens at the

For each of these output

For each accepted token an acknowledge

Three major factors v-iich influence the performance of a buffered

delta network are the size of the switches, the size of the buffers used

in each switch, and their position with respect to the switch. It is

shown in (281 that for small buffer sizes, delta networks constructed

55

with 4 by 4 switches provide slightly better throughput and substan-

tially lower delay than 2 by 2 switches.

the delta networks constructed from 2 by 2 switches provide better

throughput at the expense of larger delays.

However, for large buffer sizes

Tokens are blocked when there is either more than one token in the

switch (switch blocking) or insufficient buffer capacity (buffer

blocking). In networks with large buffer sizes, buffer blocking is

minimized and the degradation of throughput is primarily due to switch

blocking.

switch, it is advantageous to use 2 by 2 switches instead of 4 by 4

ones. The buffers can be provided at the input links of each switch, as

shown in Fig. 5.3a, or they can be inside the switch as shown in Fig.

5.3b.

is advantageous to use buffers inside the switches, in terms of both

Since switch blocking increases with the size of the crossbar

Kumar and Jump [28] have deduced that with large buffer sizes it

throughput and delay.

In a crossbar switch several tokens may simultaneously request the

same output port, so various priority schemes can be used for selection.

The simplest method is to select one of the tokens randomly. Another is

the rotating priority scheme in which a l l buffers in the switch are

assigned a permanent cyclic order.

are considered in this order, starting from a designated high-priority

buffer.

cycle becomes the high-priority buffer in the next cycle.

scheme, a token in any buffer is considered to have a priority equal to

In each clock cycle all the buffers

The buffer adjacent to the high-priority one in the current

In another

56

Fig . 5.2 A Buffered Delta Network

the number of tokens in that buffer.

measure, one is selected equiprobably.

the performance of the random melection scheme is found to be similar t o

the other tvo schemes, and is the easiest one to implement.

For tokens with tho same priority

From the results shown i n 1281,

5 7

-

Fig 5 . 3 a Crossbar

I ..

Switch with b u f f e r s at the input links

I

Fig 5 . 3 b Crossbar Switch with the b u f f e r s inside the switch

5 8

5.3.6 Token Format

As mentioned earlier, information is communicated between PES via

tokens or packets. There are two types of tokens, the instruction token

containing the required information for a node execution and the data

token carring data required to enable the node. A 64-bit token size

accomodates a 32-bit data or operation field and 32 bits for the control

directives. The control portion of the token includes the following

subfields :

i) Check field : This determines whether it is an instruction
tokem or a data token.

ii) Module field : This identifies the block of code (procedure
or loop) to which the token belongs.

iii) Instruction number field : This identifies the instruction
number within a specific block.

iv) Processor field : This denotes the processor responsible
for executing the code.

v) Error check field : This contains information for checking
Error detection and correction the validity of the token.

(EDAC) codes like cyclic redundancy check (CRC) and Hamming
codes can be used.

vi) Data counter field : This is a part of the data token only.
It indicates the number of operands required to enable a
node.

The remaining 32 bits of the token contains the data value or the

instruction code, as the case may be. From the software point of view, a

longer token is better since it can carry more information. On the other

hand, a shorter token is better from the hardware point of view,because

.it reduces the amount of hardware and network conn*.ctions. Hence, the

size of the token should be chosen in an optimal manner.

59

5.3.7 Design of the Processing Element

The processing element (PE) is designed to meet some specific

Every token has a tag or control field, and the PE has the requirements.

ability to decode the tag and route the token to the separate components

of the PE.

tokens. A Contents Associative Memory (CAM) is simulated using the

hardware hashing technique.

generated from the tag at a very high search speed. The PE provides

circuitry for EDAC decoding and encoding, and has the ability to detect,

isolate, and rectify faults. Most of the units are self-checking.

A block diagram of the proposed PE design is shown in Fig.5.4.

The PE provides local storage for instruction and data

A hash table is accessed by the hash key

It

consists of an input queue, an EDAC decode unit, a wait-store-match

unit, an execution unit, an output unit, and the overflow and intermedi-

ate buffers.

The input queue is a FIFO buffer, receiving tokens from other PES

and sending them to the EDAC decode unit. It works as a rate balancing

mechanism, attempting to even the rate of token production and consump-

tion. Therefore,' it allows the wait-match-store unit and the execution

unit to work concurrently.

The EDAC decode unit checks the error code of the token. If a

correctable fault is detected, it passes the rectified token to the

wait-match-store unit. If the fault is not rectified, it informs the

diagnostic unit.

The wait-match-store unit consists of a code memory to store the

instructions and an operand memory for data.

the hashing mechanism generates a hash key to address the hash table,

called the Operand Block Table (OBT).

After a token is received,

Each entry of the operand memory

60

consists of 34 bits, which includes a 2-bit Operand Enable Flag (OEF)

and a 32-bit data value. The OEF shows the existence of the operand.

It is set to 00 if no token has arrived. When a data token arrives, the

OEF is set to 10 or 01, depending on whether it is the left or right

operand (denoted by the data counter field), and the data is stored in

the data area.

After a token is received, the unit starts accessing both the

operand and code memories simultaneously.

the operand memory is not searched, and the executable packet is

immediately generated.

searched, and if the matched token is found, the executable packet is

generated, and the OEF is set to 00. The executable packet is passed

onto the execution unit.

If the instruction is monadic,

For a dyadic instruction the operand memory is

The execution unit performs all arithmetic and logic instructions.

Some commonly used instructions can be hardwired to enhance the speed of

execution. The result tokens are forwarded t o the output unit.

The output unit generates the tag field of the result token.

token is properly formatted and the EDAC code is embedded in it.

it is possible to encounter delay while transmitting a token through the

communication network, a buffer is also provided in the output unit.

The

Since

The overflow memory is provided to augment the operand memory. An

overflow occurs when all locations in the operand memory are occupied.

Then the unmatched incoming token is stored in the overflow buffer, and

indicator flags are set up to notify subsequent tokens. The intmnediate

buffer stores the,matched tokens of an enabled instruction, so that the

tokens can be retrieved when a fault is detected after execution.

[Token J

I

I
Output Unit s-4

I
I
I
I

Input

Decode

I
I EDAC Encode I

4
Buffer I

, I
I
I
I
I

I
I
I
I
I
I
I

Intenned
Buffers I

I
I
I
I

r i

Operand --+q----- Block Table
A

Data
Area OEF

t Operand
Memory Y

MUX

I
I
I
I
I
I
I

I
Wait- I

Hatch- I

Store -+
Unit I.-----------

[Executable

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

of the PE
t

~-

Diagnostic

Unit

t
To Diagnostic
Processor

+
[Token]

Fig. 5.4 Block Diagram of the proposed PE

62

The diagnostic unit periodically checks the major components of the

PE.

execution or when the tested unit is inactive to avoid any degradation

of system performance.

aborts the PE and informs the diagnostic processor, which in turn

initializes the reassignment process.

the output unit from transmitting a faulty token, and thus can localize

the fault.

These tests can be executed either in parallel with the normal

Once a fault is detected, the diagnostic unit

The diagnostic unit can prevent

5.3.8 Fault Tolerance

Fault tolerance is an important requirement of any multiprocessor

architecture. In the proposed architecture both hardware and software

fault tolerances are used to improve system reliability. The workhorse

PES within a cluster are duplicated to provide hardware redundancy, and

are built with extremely reliable components.

is very nagged and reliable.

within every PE with the help of self-checking circuitry and diagnostic

units.

The communication network

Fine-grained fault tolerance is provided

Software fault tolerance is provided by watchdog timers and EDAC

codes.

proper process functions.

from the one it checks, and is set as soon as the process starts.

process resets the timer after completing successful completion.

timer is not reset, then a process failure is assumed.

A watchdog timer is a simple and inexpensive way of monitoring

A timer is maintained as a process separate

The

If the

63

Transmission faults are easily detected and corrected using various

codes. A simple example is the single error correction and double error

detection Hamming code.

12-bit word like

For a 8-bit data word the encoder generates a

where H ' s are the check bits and D's are the data bits.

The following are called the syndrome equations :

Si - Hi + D3 + D5 + D7 + Dg + D11

S2 - H2 + D3 + Dg + D7 + D10

S4 - H4 + D5 + D6 + D7 + D12

- H8 + Dg + D10 + D11 + D12
where '+' denotes an exclusive OR operation. While generating the code,

the check bits are produced by setting the syndrome bits to zero.

During the checking process, the syndrome bits are checked.

the resulting syndrome bits is nonzero, then a detectable error has

occurred. An error can be corrected provided only bit is erroneous.

The binary number s8s,$s2s1 gives the position of the erroneous bit.

example, if D12 is changed, then s8 and S4 are nonzero and sgs4S2s1 =

1100 - 12 in decimal.
data words.

If any of

For

This code can be extended to accommodate longer

5 . 3 . 9 Stacked Hybrid WSI Technology

The entire architecture must be housed within a small package. Hence

the dimensions, weight, and cost of the hardware are important consider-

ations. Hybrid Wafer Scale Integration (WSI) is a possible solution.

This technology involves scribing the wafer after fabrication. The

64

actual PES are then separated and remounted in preassigned positions

onto a substrate of polyimide. The inter-processor links are fabricated

by ion-implantation techniques. Hybrid WSI partially eliminates the two

major problems of traditional WSI, viz., yield and power dissipation.

Since each PE is scribed and then separated, partial testing may be

performed prior to remounting.

the polyimide substrate.

Power is more easily dissipated through

Multi-stack wafers can be used to house the two clusters and other

The 3D Computer Studies Department at the Hughes Research units.

Laboratories, Malibu, California has built an image processing cellular

array of stacked CMOS wafers with feedthroughs and interconnects.

significant advantage of such a scheme is the upgradeability of the

architecture as additional features are accommodated by introducing more

wafer stacks.

A

65

Chapter 6
CONCLUSIONS AND RECOMMENDATIONS

The previous chapters have discussed the need, development,

utilization, and validity of this research. Experimental results have

been discussed in Chapter 4.

some general conclusions and recommendations.

The purpose of this chapter is to express

6.1 CONCLUSIONS

This research has proved that acceptable results can be obtained by

using parallel processing in real-time systems.

enhancement of avionics design and vehicle control is possible by

computing the guidance commands in real-time, exploiting the parallelism

inherent in the problem.

It has shown that

There are various ways of applying parallel processing techniques to

meet the need of rapid and real-time computation. It is concluded that

one of these approaches, outlined in this report, comprises the follow-

ing two major phases :

1.) The sequential algorithm is suitably restructured by remov-
ing dependencies, identifying concurrent tasks, exploiting
optimum parallelism, and optimally allocating the tasks to
available resources.

2.) Appropriate hardware structures are designed to implement
the parallel or modified algorithm.

Together, the above two phases constitute an innovative, customized

computer architecture for the algorithmic execution of a real-time

system. The data-driven mode of computation is ideally suited for the

real-time solution of control processing, avoiding the bottlenecks of

von Neumann multiprocessing.

66

This research has also demonstrated the significance of the alloca-

tion process in a parallel processing application. Optimal allocation

can be achieved with the help of heuristic algorithms.

6 . 2 RECOMMENDATIONS

The scope of this research is not limited to the specific field of

guidance and control.

outlined in this report, to similar problem areas in other real-time

sys tems .

The authors recommend the use of the techniques,

The significance of the allocation process has been demonstrated by

The authors suggest the design of allocation algorithms this research.

which are themselves suitable for parallel implementation, an example of

which is the branch and bound technique, discussed in section 3 . 4 . 2 .

The effect of using decoupling techniques to reduce dependencies

between differential equations should be investigated.

can be further improved by defining tasks with optimum granularity.

can be achieved by striking a suitable balance between the execution and

communication times. The authors also recommend further research in the

design of hardware structures which are capable of executing specific

algorithms and graphs.

The performance

This

67

REFERENCES

1.

2.

3.

4.

5.

6.

7.

a .

9.

Vitalji Garber, Walter S. Flory,IlI, "Optimum Intercept Laws",
Technical Report No. RD-TR-67-10, Advanced Systems Laboratory, U.S.

Army Missile Command, Redstone Arsenal, Alabama, December 1967.

G.Wil~ems, "Optimal Controllers for Homing Missiles", Report No.
RE-TR-68-15, U.S. Army Missile Command, Redstone Arsenal, Alabama,
September 1968.

John J.Deyst Jr. & Charles F.Price, "Optimal Stochastic Guidance
faws for Tactical Missiles", J. Spacecraft, vol.10, no.5, May 1973.

R.B.Asher & J.P.Matuszewski, "Optimal Guidance with Maneuvering
Targets", J. Spacecraft, vol.11, no.3, pp 204-206, March 1974.

J.N.Youngblood & M.J.Clauda, "Optimal Guidance for Missiles with
Airframe Dpamics Against Maneuvering Targets", Technical Report
AFATL-TR-77-66, Air Force Armament Laboratory, Eglin AFB, Florida,
May 1977.

J.N.Youngblood, "Optimal Linear Guidance of Air-to-Air Missiles",
Technical Report AFATL-TR-78-12, Air Force Armament Laboratory,
Eglin AFB, Florida, February 1978.

J.N.Youngblood, "Advanced Linear Guidance Laws for Air-to-Air
Missiles", Bureau of Engineering Research, Report No. 253-177,
University of Alabama, January 1980.

J.N.Youngblood, "Optimal Linear Guidance of Air-to-Air Missiles",
Bureau of Engineering Research, Report No. 222-09, University of
Alabama, July 1978.

L.Stockum & F.C.Weimer, "Optimal and Suboptimal Guidance for a Short
Range Homing Missile", IEEE Trans. Aerospace and Electronic System,
v0l.AES-12, pp 353-361, May 1976.

10. B. Sridhar & N.K.Gupta, "Accurate Real Time SRAMM Guidance Using
Singular Perturbation Optimal Control", National Aerospace and
Electronic Conferenece, Dayton, Ohio, May 1979.

11. W.L.Miranker & W,Liniger, "Parallel Methods for the Numerical
Integration of Ordinary Differential Equations",Math.Comput.,vol.21,
pp 303-320,1967.

12. Z.Kopal,Numerical Analysis with emphasis on the application of
Numerical Techniques to Problems of Infinitesimal Calculus in Single
Variable , Wiley N.Y., Chapman Hall, London, 1955.

13. J.Nievergelt, "Parallel Methods for Integrating Ordinary
Differential Equations",CACM vol. 7, no. 12, Dec 1964, pp 731-733.

68

14. R.Lord & S.Kumar, "Parallel Solution of Flight Simulation
Equations", Proc. of the 1980 Summer Computer Simulation Conference,
Seattle WA, August 1980, AFIPS Press, pp 217-233.

15. N.Katz,M.A.Franklin,& A.Sen, "Optimally Stable Parallel Predictors
for Adams-Moulton Correctors", Comp. and Math. with Applications,
-1.3, 1977, pp 217-233.

16. E.G.Coffman 6 P.J.Denning, Operating Systems Theory, Prentice Hall,
Englewood Cliffs, N.J., 1974.

17. E.G.Coffman, Computer and Job-Shop Scheduling Theory, New York,
Wiley, 1976.

18. J.D.Ullman, "Polynomial NP-complete Scheduling Problems", Operating
Systems Review, vo1.7, no.4, 1973, pp 96-101.

19. H.R.Garey & D.S.Johnson, Computers and Intractability : A Guide to
the Theory of NP-Completeness, S a n Francisco, CA., Freeman, 1979.

20. T.L.Adam, K.P.Chandy, & J.R.Dickson, "A Comparison of list schedules
for Parallel Processing Systems", Comm. ACM, vo1.17, Dec 1974, pp
685 - 690.

21. H.Kasahara & S.Narita, "Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing",IEEE Trans. on
Computers, v01.C-33, no.11, Nov. 1984, pp 1023-1029.

22. T.C.Hu, "Parallel Sequencing and Assembly line Problem", Operations
Research, vo1.9, Nov. 1961, pp 841-848.

23. E.L.Lawler, Combinatorial Optimization : Networks and Matroids, New
York, Holt, Rinehart, and Winston, 1976.

24. W.H.Kohler, "Characterization and Theoretical Comparisons of
Branch-and-Bound Algorithms for Permutation problems", J. of ACM,
v01.21, Jan. 1974, pp 140-156.

25. Anrind & R.A. Iannucci, "A Critique of Multiprocessing von Neumann
Style", Proceedings of the 10th Symposium on Computer Architecture,
1983, pp 426-436.

26. Arvind, "The Tagged Token Dataflow Architecture", Draft, Laboratory
for Computer Science, MIT, November 1982.

27. I. Watson & J. Gurd, "A Pro':otype Dataflow Computer with Token
Labeling", AFIPS Conference Proceedings, vol. 48, June 1979, pp
623-628.

28. M. Kumar 6 J.R. Jump, "Performance Enhancement in Buffered Delta
Networks Using Crossbar Switches and Multiple Links", Journal of
Parallel and Distributed Computing 1, !984, pp 81-103.

69

DESCRIPTION
Entry
a--wn*n

b-- 2-n

INC i
AT

Q-a*a/r
PlP
PIC
P2P
P2c
P3P
P3c
P4P
P4c
PSP
PSC
P6p
P6c
P7P
P7c
P8p
P8c
P9P
PgC
Plop
PlOC
PllP
PllC
P12P
P12c
P13p
P13'
P14p
P14c
TEMPlP=Q*P$P
TEMPIC
TEMP2P=Q*P7P
TEMP2C
TEMP3p-Q*P9p
TEMP3C
flP0- P4P*TEMPlP
flC
f 2PoPlP- P7P*TEMPl
f 2c
TEMP4P-a*P4P+P2P

NO. TIME
1 0
2 30

3 50

4 20
5 20

6 60
7 110
8 110
9 110
10 110
11 110
12 110
13 110
14 110
15 110
16 110
17 110
18 110
19 110
20 110
21 110
22 110
23 110
24 110
25 110
26 110
27 110
28 110
29 110
30 110
31 110
32 110
33 110
34 110
35 30
36 30
37 30
38 30
39 30
40 30
41 30
42 30
43 50
44 50
45 50

Appendix A
TASK LIST

PREDECESSORS
None
1

1

1
1

2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6,13'
6,14
6,19
6,20
6,23
6,24
13,35
14,36
7,19,35

2,9,13
a, 20,36

70

SUCCESSORS
2,3,4,5
6,45,46,57,58,69,70
77,78,95,96,105,106
49,50,63,64,75,76,81,
82,101,102
7,8, ... 108,109
87,88,91,92,97,98,
103,104
35,36,37,38,39,40,83,84
43
44
45,55,87
46,56,88
49,61
50,62
35,41,45,49,67
36,42,46,50,68
61,91
62,92
67,69,97
68,70,98
37,43,53,57,63,77,103
38,44,54,58,64,78,104
75
76
39,47,59,69,71,75,79,81
40,48,60,70,72,76,80,82
51,65,77,81,83,105
52,66,78,82,84,106
91
92
95
96
101
102
89,93,95,99,101,107
90,94,96,100,102,108
41,43,47,51,89,93
42,44,48,52,90,94
53,59,65
54,60,66
71,79 , 99
72,80,100
109
119
109
109
47

TEMP4C 46
f3P=TEMPlP*P9P + 47

TEMP4P
f3= 48
TEMPSP-P3P+P4P*b 49
TEMPSC 50
f4p-TEMPlP*PlOp + 51

f4C 52
TEMP6P=TEMP2P*P7P 53
TEMP6C 54

f5C 56
TEMP7P=a*P7P 57
TEMP7C 58
TEMP8P-TEMP2P*P9P 59
TEMPSC 60
f 6p-P3p+P5p+TEMP7p 61

f6= 62
TEM.P9P=b*P7P 63
TEMPgC 64
TEMPlOP-TEMP2P*PlOP 65
TEMPIOC 66
f7p-P6p+P4p+TEMP9p 67

f7C 68
TEMPllP-P6P+a*P9P 69
TEMPllC 70
TEMP12P=TEMP3P*P9P 71
TEMP12C 72
f 8P-2*TEMPllP 73

fSC 74
TEMP13P-P8P+b*P9P 75
TEMP13C 76
TEMP14P-P7P+a*PlOP 77
TEMP14C 78
f9P=TEMP13P+TEMP14P 79

fgC 80
TEMPlSP-P9P+b*PlOP 81
TEMPISC 82
TEMP16P=Q*PlOP 83
TEMP16C 84

TEMPSP

f5P-2*P2P-TEMP6P 55

- TEMP8P

-TEMPlOP

-TEKP12P

-TEMP3P*P9P

f lOP-2*TEMPlSp as
-TEMP16P

f lo= 86
TEMP17P-P2*AT 87
TEMP17C 88
fllP-TEMP17P- 89

fllC 90
TEMPlP*P4P

TEMP18P-P11P-P5P*AT 91

50
50

50
50
50
50

50
30
30
40
40
30
30
30
30
60

60
30
30
30
30
60

60
50
50
30
30
40

40
50
50
50
50
70

70
50
50
30
30
40

40
30
30
50

50
50

2,10,14
23,35,45

24,36,46
3,11,13
3,12,14
25,35,49

26,36,50
19,37
20.38
9,53
10,54
2,19
2,20
23.37
24,38
11,15,57,59

12,16,58,60
3,19
3,20
25,37
26,38
13,17,63,65

14,18,64,66
2,17,23
2,18,24
23,39
24,40
69,71

70,72
3,21,23
3,22,24
2,19,25
2,20,26
23,39,75,77

24,40,76,78
3,23,25
3,24,26
6,25
6,26
81,83

82,84
5,9
5,lO
33,35,87

34,36,88
5,15,27

71

48
109

109
51
52
109

109
55
56
109
109
61
62
61
62
109

109
67
68
67
68
109

109
73
74
73
74
109

109
79
80
79
80
109

109
85
86
85
86
109

109
89
90
109

109
93

TEMP18= 92 50
f 12P-TEMP18P - 93 50

f12C 94 50
TEMP19P-P12P+a*P14P 95 50
TEMP1gC 96 50
TW20P-P6P*AT 97 30
TEMP20C 98 30
f 1 3P-TEMp19P - 99 70
TEMP20P-TEMP3P*P4P
f13C 100 70
TEMP21P-P13P+b*P14P 101 50
TEMP21C 102 50
TEMP22P-P7P*AT 103 30
TEK?22C 104 30
TEMP23P+PlOP 105 30
TEMP23C 106 30

TEMPlP*P14P

f14P--TEMP23P*P14P 107 70
+TEMP21P -TEMP22P

f 14c 108 70
CMP 109 50

EXIT 110 0

5,16,28 94
33,35,91 109

34,36,92 109
2,29,33 99
2,30,34 100
5,17 99
5,18 100
33,39,95,97 109

34,40,96,98 109
3,31,33 107
3,32,34 108
5,19 107

2,25 107

33,101,103,105 109

5,20 108

2.26 108

34,102,104,106 109

52,55,56,61,62,67,
68,73,74,79,80,85,
86,89,90,93,94,99,
100,107,108
109 NONE

41 ... w,47,48,5i, 110

72

Appendix B
TASK GRAPH PROGRAM

(Author : Arindam Saha All Rights Reserved by author 1
(Program explained in Section 3.2 also. 1
(Extensive documentation is provided with the program. 1
(This program maps any given task graph onto a group of processors.)
(It requires the vertices and the edges of the task graph as its 1
(input and provides the schedule ,i.e., which task is to be executed)
(by which processor and at what time. The number of processors is a)
(variable. The program implements the CP/MISF (explained in chapter)
(three) algorithm. 1

program cpmisf(input,output);

type
proc - record

end:

tas - record
busy : boolean; (Each processor is either busy or free)

(This is the task definition)

enabled : boolean;

assigned : boolean;

time : integer; (Execution time of the task
resource : integer; (The processor number to which it is assigned)
starttime : integer; (Time instant at which it starts execution)

(Task is enabled when all its predecessors)
(have been executed
(Task is assigned to an available processor)

executed : boolean; (Task has finished execution or not 1

end;
matrlx=array[l..110,1..110] of boolean;

var
a,newa : matrix;
pr,prl : array[l..llO] of real; { priority lists)
time,imsucc,newtime : array [1..110] of integer;
i,j,k,l,v,t,p,serialtime : integer;
filvar,filvarl : text; (input and output data files)
task : array[l..llO] of tas;
processor :array[l..35] of proc;
over : boolean;
speedup,eff : real; (performance indices)

(a : adjacency'matrix newa : modified a after renumber)

(This procedure reads the input data and initializes all the variables

procedure initialize;
var
x,y,e,vl,v2 : integer;

begin
readln(filvar1,v.e);
for x:-1 to v do
for y:-1 to v do a[x,y]:-false;

7 3

for j :-I to e do begin
readln(filvarl,vl,v2);
a[vl,v2]:-true;
end; (for)

for 1:-7 to 109 do a[4,i]:-true; (This is for the particular graph.
for j:-1 to v do begin

end; (for)
end;(initialize)

raadln(filvarl,time[j],~ucc[j]);

(This procedure calculates the level (defined in chapter 3) of each task.

procedure level;
var
b : array[1..110,1..110] of integer;
temp,temp4 : real;

for 1:-1 to v do
for j:-1 to v do

bagin

i f a[i,j] then b[j,i]:-O else b[j,i]:--maxint;

pr[v]:-time[v]; prl[v]:-time[v];
for i:-1 to (v-1) do begin
temp:-0.; k:-v-i;temp4:-0.;
for j:-k to (v-1) do begin
prl[k]:-prl[j+l] + b[j+l,k] + time[k]; (prl is used to calculate the

pr[k]:-pr[j+l] + b[j+l,k] + time[k] + imsucc[k]/v; (The last factor
(considers the effect due to the number of successors
if pr[k]>temp then temp:-pr[k];
if prl[k]>temp4 then temp4:-prl[k];
end; (for j)

(critical time of the graph.

pr [k] :-temp ; prl [k] :-temp4 ;
end;(for i)

end;(level)

{ This procedure renumbers the tasks according to their priorities, with
(task one having the highest priority.

procedure renumber;
var
max : real;
newno : array[l..llO] of integer;

begin
for k*-1 to v do begin
ma:-pr[l] ; j :-1;

for 1:-2 to v do begin
if pr [i]>max then begin
ma:-pr[i];
j :mi;
end; (if)

74

end;(for i)

newtime[k]:-time[j];pr[jJ:--1.;
newno[j J :-k;

end;{for k)
(for i:-1 to v do writeln(filvar,'New number[',i,'] - ',newno[i]);)

1 (Modifying the adjacency matrix according to the new numbers
for i:-1 to v do

for 1:-1 to v do
for j:-1 to v do newa[i,j J :-false;

for j:-1 to v do if a[i,j] then newa[newno[i],newno[jJ]:-true;
end;(renumber)

. { This procedure updates the adjacency matrix when task z has finished)
(execution. 1

procedure update(z : integer);

var
m,n : integer;

begin
for m:-1 to v do
if newa[z,m] then begin
newa[z,m]:-false;
task[m].enabled:-true;
for n:-1 to v do if newa[n,m] then task[m].enabled:-false;

end; (then)
end; {update)

(main program)

begin
assign(filvarl,'a:inputl.dat');
assign(filvar,'a:output3O.dat~);
reset(filvar1);
rewrite(fi1var);
writeln('Enter the order of the graph and the no. of processors');
readln(v,p);
initialize;
level;
renumber;

for i:-1 to p do processor[i].busy:-false;(all processors are initialized)

for i:-1 to v do begin
(Tasks are initialized)

task[i].assigned:-false;
task[i].enabled:-false;
task[i].executed:-false;
task[i].time:-newtime[i];

end; (for i)

task[l].executed:-true ; task[v].executed:=tre ;
update(1); (Task one is the entry node)

75

t:-O;
(Initial tasks are asigned)
for j:-1 to p do

not(processor[j].busy)) then begin
for i:-1 to v do if (task[i].enabled and not(task[i].assigned) and

task[i].resource:-j;
task[i].starttime:-t;
task[i].assigned:-true;
processor[j].busy:-true;
end; (then)

t:-1;

repeat

for i:-1 to v do if (task[i].assigned and not(task[i].executed)) then begin
task[i].tinre:- task[i].time - 1; (finished one unit of time)
if task[i].time-0 then begin
task[i].exscuted:-true; (task i has finished execution)
update(i) ;
processor[task[i].resource].busy:-false; (processor becomes free 1

end; (for i)
end; (time:-O)

(If any processor is free then we check all the enabled but not assigned)

for j:-1 to p do if not(processor[j].busy) then
{ tasks which can now be assigned. 1

for i:-1 to v do if (task[i].enabled and not(task[i].assigned) and
not(processor[j] .busy)) then begin
task[i].resource:-j;
task[i].assigned:-true;
task[i].starttime:-t;
processor[j].busy:-true;
end; (for i then)

over:-true;
for i:-1 to v do if not(task[i].executed) then over:-false;

until (over) ; (until all tasks have been executed)
t:-t + 1;

{ Outputting data)
writeln(filvar,'Critical time for this graph is - .'Dprl[l]);
writeln(filvar,'Total time taken - ',(t-l)D' units');
writeln(filvar,'Task Starttime Resource');
for 1:-2 to v-1 do begin
write(filvar,' ',i,' ',task[i].starttime,'

writeln(fi1var);
e) ;

end; (for)

',task[i].resourc

{ Calculating the performance indices 1
seria1time:d;
for i:-1 to v do serialtime:-serialtime + time[€];
speedup:-serialtime/(t-1);
eff:-speedup/p;

76

writeln(filvar,'With ',p,' processors Speedup-',speedup,'; Efficiency-',eff);
close(fi1var);
close(filvar1);
end.

77

